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Abstract. We investigate the effective permeability of a heterogeneous random medium by 
numerical simulation and by self-consistent perturbation theory for a class of models 
including the log-normal model. For a reasonable range of parameters we find close 
agreement between the simulation and the perturbative calculation. This suggests that both 
methods may be useful for appropriate models. However the simulation approach is widely 
applicable in circumstances where a perturbation calculation is not possible. 

1. Introduction 

There are many situations in which it is useful to be able to predict the large-scale 
behaviour of a fluid flowing through a region of variable permeability (Dullien 1979, 
Scheidegger 1974). Recently King (1985) has shown how the effective permeability of 
a random medium may be calculated by means of a perturbation series in the fluctuating 
part of the local permeability. 

In this paper we extend these calculations to higher order, for a class of models 
of random media of which the log-normal model is an example. We show how to 
reformulate the perturbation series in a self-consistent manner and present a comparison 
of these theoretical results with those of a numerical simulation. 

A brief discussion of flow through a medium of variable permeability and an 
associated diffusion problem is presented in § 2. In § 3 we discuss the class of models 
we are able to deal with theoretically, and indicate briefly their applicability. The 
perturbation series for the effective permeability is formulated in § 4 and evaluated up 
to terms of fourth order. In § 5 we introduce certain resummation techniques to simplify 
the series and we also reformulate it in a self-consistent manner. The numerical 
simulation is described in 9 6 and numerical comparisons are studied in § 7. 

2. Flow through a randomly por6us medium 

The steady flow of a fluid through a medium with a permeability distribution K ( X )  

satisfies Darcy’s law (Dullien 1979, Scheidegger 1974), namely 

where u ( x )  is the velocity and p ( x )  is the pressure distribution in the fluid. For an 
incompressible fluid the pressure satisfies 
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If a unit point source of fluid is present within the medium at x' then (2.2) is altered 
to 

v * ( K  (X)Vp) = -6 (  X - X') .  (2.3) 

p = G(x, x') (2.4) 

We are then interested in that solution of (2.3), namely 

which satisfies homogeneous boundary conditions appropriate to the geometrical layout 
of the particular problem under consideration. 

For the purposes of numerical simulation it is useful to consider also the diffusion 
problem associated with (2.2), namely 

V .  ( ~ ( ~ ) V p ) = a p / a ~  (2.5) 
where, it should be emphasised, T is an artificial time, distinct from real time, so far 
as the permeability problem is concerned. Of course (2.5) is independently interesting. 

Any solution of (2.5) which satisfies the physical boundary conditions of the original 
problem will relax to the correct solution of (2.2) as T + W. Furthermore if F(x, x', T )  

is that solution of (2.5) satisfying homogeneous boundary conditions together with the 
requirement 

F(x ,x ' ,O)=6(x-x ' )  (2.6) 
then 

G(x, x') = lom d7 F(x, x', T ) .  (2.7) 

This emphasises the close connection between the two problems. 
The aim of our calculation is to predict the mean or effective pressure distribution 

in a given fluid flow, from a knowledge of the statistical properties of the permeability 
K(x).  Details of particular models will be enlarged on later; however, for reasons of 
simplicity we will always assume large-scale homogeneity and isotropy of the medium. 
It is sufficient therefore to consider the Green function problem (2.3) for an infinite 
medium with vanishing boundary conditions at infinity. The statistical properties of 
the medium are incorporated by computing an effective Green function %(x-x') as 
the ensemble average of G(x, x'). Thus 

(2.8) %(x - x') = ( G(x, x')) 

where ( A )  denotes the average of A over the ensemble from which K(X)  is drawn. 
At large distances we expect 

1 
%( x - x') = 

47TK,IX -XI1 
(2.9) 

where K ,  is the effective permeability of the medium. It is K ,  which determines the 
large-scale behaviour of the mean pressure distribution. 

If we define the Fourier transform of %(x -x')  thus: 

g ( k )  = d3x exp[-ik.(x-x')]%(x-x') I 
then (2.9) implies that, for k + 0 ,  

(2.10) 

1 
g ( k ) = -  

K,k2' (2.11) 



Of course 

where 

As T + C O  
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%(x - x’) = lom d r  9 ( x  - x’, 7) 

9( x - x’, 7) = ( F ( x ,  x’, 7)). 
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(2.12) 

(2.13) 

(2.14) 

so that K ,  also controls the dispersion at large ‘times’ T in the diffusion version of the 
problem. This is the property we will use to obtain K ,  by numerical simulation of the 
diffusion process. 

3. Types of model 

The models of random media investigated in this paper are specified by a permeability 
distribution of the form 

.(X) =f(d)(x))  (3 .1)  

where 

and +(x)  is a Gaussian random variable with zero mean and a two-point correlation 
function 

A(x-x’)  = (d)(x)d)(x’)) (3 .3 )  

K ( X )  = K o  exp(A4(x)).  (3.4) 

normalised so that A(0)  = 1. The choice c,, = K~ for all n yields the log-normal model: 

The models are further specified by giving the form of A(x - x’), which it is natural to 
do  in terms of its Fourier transform: 

& ( k )  = d3k exp[-ik- (x-x’)]A(x-x’). (3 .5 )  I 
Particular choices of & ( k )  will be studied later. 

It is worth noting that the mean permeability is 

which in the log-normal model becomes 

K ,  = exp($h’). (3 .7)  
The justification for considering models of this type is partly the ease with which 

they can be analysed both theoretically and  by numerical simulation. However they 
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are not trivial and can be used to represent a variety of types of medium. The log-normal 
model, for example, yields a smooth distribution of permeability about the mean value, 
while avoiding the unphysical situation of negative permeability. 

Other choices, such as 

f( I#J) = K ~ (  1 + a tanh AI#J)  (3.8) 

can be used to represent a medium with sharply differentiated regions of permeability 
with the values K ~ (  1 * a )  by an appropriate choice of parameters. Clearly many other 
models can be constructed in the same spirit. 

4. Perturbation theory for the effective permeability 

King (1985), drawing on the methods of many-body theory, has shown how to calculate 
the effective permeability for a random medium from a perturbation series for g ( k ) .  
Similar methods have been used in discussions of turbulent diffusion (Phythian and 
Curtis 1978, Drummond et a1 1984, 1986). 

Here we will use the variable A which appears in (3.2) as the expansion parameter 
for the perturbation series. Following standard reasoning (King 1985) we find 

1 g( k )  = 
K o k 2  + Z( k )  (4.1) 

where co= K~ and Z ( k )  is a sum over terms each associated with a graph of the kind 
illustrated in figures 1-4, according to rules set out below. 

(-1 L 1 /-', 
(a1 Ibl 

Figure 1. One-loop contributions to the full Green function. 

Figure 2. Two-loop contributions to the full Green function. 
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Figure 3. Bubble decorations which lead to the redefinition of the free Green function by 
means of the resummation described in (5.1) and (5.2). 

Figure 4. Bubble decorations on an internal line. 

As we will see, each term in the series for Z ( k )  is O( k 2 )  as k + 0. Hence 

1 ( k )  = uk2 k + O  (4.2) 

with the result that 

1 
( K O +  a) k2  g( k )  = k + 0. (4.3) 

It follows immediately (see (2.1 1)) that the effective permeability is 

K ,  = K g  + U. (4.4) 

The graphical rules for the terms in the perturbation series are as follows. 
(i)  Associated with a line 

i k  i 

is a factor 

kikj 
Kok2' 

-- 

(i i)  Associated with a broken line 

is a factor 

m. 
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(iii'l Associated with a vertex with n-broken lines 

\ 

i 

is a factor 

S+c,A ". 
(iv) Momentum is conserved at each vertex. 
(v) Each loop momentum q is integrated with a weight 

(vi) Internal Cartesian suffixes are contracted in a natural way; the two external 

(vii) The contribution of each graph is also divided by an  appropriate symmetry 

The simplest contributions to Z ( k )  correspond to figure l ( a ) .  We find, on applying 

suffices are each contracted with the external wavevector. 

factor. 

the above rules, that 

i.e. 
c""'( k )  = ic2A 2 k 2 .  

From figure l ( 6 )  we obtain 

When k is small this yields 

(4.5) 

(4.6) 

(4.7) 

The contributions of O(A4) are associated with the diagrams of figure 2 .  The final 
result then to O(A4) is 

1 
K , = K ~ + A ~  f c 2 - - - c 1  + A 4  $ c 4 - - ( f c l c 3 + ~ c ~ )  ( i o  '> ( K O  

1 1 1 1  
KO 3 KO 

+ 7 c : c 2 ( $  + 31, - - ?C?( I + J )  
where 

and 

(4.9) 

(4.10) 

(4.11) 
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These integrals are readily evaluated by numerical integration for specific choices of 
correlation function A( p ) .  

5. Resummation and self-consistent perturbation theory 

There is a natural resummation associated with the diagrams of figure 3 which make 
up  a series with X ( l a )  as its first term. The whole series yields a contribution to U of 
the form 

u = c 2 ( 3 + 5 c 4 ( 3  1 2 2  +&) 1 2 3  +.  

The sum of this series is K ,  - K~ leading to the result 

K ~ +  U = K,. ( 5 . 2 )  

When all these terms are included the lowest approximation to g ( k )  is changed from 
1 / ~ ~ k ’  to l /~ ,k ’ ,  i.e. K~ has been replaced by K , .  A similar replacement occurs on 
every internal line if we add  up  all the bubble decorations it carries as indicated in 
figure 4. It follows that we can change the rules set out in 0 4 by replacing K~ with K, 

provided we omit all bubble decorations to straight lines. 
The result for the effective diffusivity can now be expressed as 

1 1 1  
K ,  = K ,  - j A  - c: + A 4  --(cfc,c3 +bc:) + 7 c:c2(b +:I )  -- 3 c:(I  + J ) ) .  (5 .3 )  

1 2 ’  K m  ( K L  K m  3 K m  

The main point of this resummation is that it is better to perturb about the mean 
permeability K , ,  which has a direct physical significance, rather than the original 
parameter K ~ .  We now argue that it is even better to perturb about the exact result. 
This means that in principle the lowest approximation to %(x - x‘) will have the exact 
long distance behaviour. The resulting equations constitute a self-consistent perturba- 
tion series as advocated by Phythian and Curtis (1978) and used by us in another 
context (Drummond et a1 1984). 

To derive the self-consistent series we re-express K ,  in the form 

K,=Ke-T2-774- .  , . (5.4) 

where 77’ and 774 are terms of O(A2) and O(A4) respectively. We then substitute this 
series for K ,  into (5.3) and demand that the equation remain consistent order by order 
in A. The result to O(A4) is 

( 5 . 5 )  

The self-consistent value of K ,  is obtained to O( h 4 )  by solving numerically the equation 

K e =  K m +  772+ 774 (5.7) 

where we regard q2 and v4 as those functions of K ,  given in ( 5 . 5 )  and (5.6). 
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6. Numerical simulation 

As indicated in P 2 ,  our numerical simulation of the effective permeability is based on 
the diffusion equation (2.5). There are two important aspects of this simulation. First, 
we need a method for constructing realisations of the Gaussian random field 4 ( x )  
from which the permeability field is constructed and, second, we need an effective 
algorithm for integrating the stochastic differential equation which corresponds to ( 2 . 5 ) .  

The Gaussian random field is constructed by a method which is a simplification 
of one introduced by Kraichnan (1976) and used by us (Drummond et a1 1984, 1986) 
to construct turbulent velocity fields. We set 

1 / 2  N 

cos(k,  x +  E , )  
n = l  

where { E , }  and { k , }  are independently distributed random variables. Each phase, E , ,  

is distributed uniformly over the whole angular range. If P ( k )  is the probability 
distribution function for each k, ,  then it is easy to see that 

A ( x - Y ) = ( ~ ( x ) ~ ( ~ ) ) =  d’kP(k) cos[k* ( x - y ) ]  (6.2) 

so that if P ( k )  is an even function of k (which we assume) then it is essentially the 
Fourier transform of A ( x - y ) .  We do not at this stage have any prejudice as to which 
forms for P ( k )  are the most realistic. We choose 

I 
1 

P (  k )  = exp( - f k 2 /  kg)  ( 2 T ) 3 / 2 k ;  

as a simple easily implemented form with a characteristic length scale k , ’ .  The Gaussian 
nature of the statistics of 4(x)  is guaranteed by choosing N sufficiently large. We 
work with N = 64, which has proved to be a sufficiently large number. 

In a recent paper (Drummond er a1 1986) we studied numerical methods for 
integrating the stochastic differential equation corresponding to ( 2 . 5 ) ,  where now we 
interpret p ( x ,  T )  as a probability distribution at ‘time’ 7 for a particle located at position 
x. The simplest discrete time-step form of the integration procedure is 

A x  = V K ( X ) A T +  ( ~ K ( X ) A T ) ” ~ ~  (6.4) 

where AT is the ‘time step’ and q is a vector whose components are independent 
Gaussian random variables with zero mean and unit variance. When implemented 
this algorithm yields a probability distribution which evolves with an error  AT). We 
have found it better to use a higher-order method with errors which are O ( A T ~ ) .  The 
algorithm for the step from x + x + A x  has the form 

(6.5) 

where q and 5 are independent Gaussian random vectors with zero mean and unit 
variance for each component. The parameters are 

A x  = V K ( Y l ) A T +  ( A d 1 / 2 M x ) ) ’ / 2 q  + [ P ( K ( Y 2 ) ) ’ / * +  Y ( K ( Y 3 ) ) 1 / 2 1 5 )  

p =$(J2+ 1) 

y = -;(& 1) 
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and the intermediate points are given by 

y ,  = x + Sv K ( X ) A T  + ( K ( x ) A T ) ’ / ’ ~  

y 2  = x + i V  K ( X ) A T  + ( 2 ~  ( x ) A ~ ) ” ’ q  

y3 = X + ~ V K  ( x ) A T  - (2K ( X ) A T ) ” ’ q .  

(6.7) 

For each realisation of K(x) ,  we introduce a particle at the origin at . r = O  and 
advance its position according to the above algorithm, measuring x’ as it develops in 
‘time’. For large T the mean of x2, averaged over the particles and realisations of K ( x ) ,  

is linear in T. The asymptotic slope is 6 ~ , .  
An important check on the accuracy of the algorithm is that it correctly reproduces 

the correct result for the small T behaviour of the probability distribution. For the 
mean square displacement we have 

(x’), = d3x (x’ eTH8(x)) (6 .8)  

where the angle brackets on the right indicate the average over the 4 ensemble and 

H =diK(X)di. (6.9) 
After expanding the exponential and using the Hermiticity of the operator H we find 

An evaluation of the first three terms yields 

( X 2 ) , = 6 ( K ) T + ( K K i i ) T 2 + f ( K K i j K i j ) T 3 + .  . . . 

(6.10) 

(6.11) 

7. Results 

We performed the numerical simulation for two different models: the polynomial model 

K ( x ) =  K ( I  + C A ~ ( X ) + ~ A ~ ~ ’ ( X ) )  (7 .1 )  

.(XI = e x p ( M x ) ) .  (7.2) 

( X ’ ) = ~ ( ~ + ~ ~ ~ ) ~ - ~ A ~ ( C ~ + ~ ~ ) T ~ + ~ ~ [ S C ~ + ( ~ O + ~ C ~ ) A ~ + ~ ~ A ~ ] T ~ + ,  . . (7.3) 

and the log-normal model 

Equation (6.11) implies that, for short ‘times’, 

for the polynomial model and, for the log-normal model, 

(X2) = 6K,T-3Kih2T2+ K : h 2 ( 5 + 8 h 2 ) T 3 + . .  (7.4) 
where K, = exp(4A’). In both cases our algorithm gave results for small T consistent 
with these formulae. We can be reasonably confident, therefore, of its accuracy. 

At large T,  (x2) increases linearly with a slope 6 ~ , .  This allows us to obtain the 
effective permeability from the simulation. The comparison between our results and 
the predictions of self-consistent perturbation theory with K~ = ko = 1 are exhibited in 
figures 5 and 6 for the polynomial model and figure 7 for the log-normal model. When 
k, = 1, I and J have the values 

I = 0.5708 J = 0.2275. (7.5) 
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x 
Figure 5. Effective permeability K, in the polynomial model, plotted against A for c = 0.7. 
The full curve shows the results of self-consistent perturbation theory. The broken curve 
shows the mean permeability. 

0 0.5 1.0 1.5 
c 

Figure 6. Effective permeability K, in the polynomial model, plotted against c, for A = 0.7. 
The full curve shows the results of self-consistent perturbation theory. The broken line 
shows the mean permeability. 

In both cases the simulation agrees with perturbation theory for a resonable range 
of parameters. In particular the inequality with which perturbation theory is consistent 
(King 1985) 

(7.6) 
clearly holds for both models. 

The discrepancy between simulation and perturbation theory which develops in 
both models for large values of A (figures 5 and 7) is no more than one should expect 
since for A = 1 the O(A4) terms in the perturbation expansion are comparable in size 
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1.3 i I 

I K, 1.2 

1.1 i 

0 0.5 1 .o 
A 

Figure 7. The effective permeability K. for the log-normal model, plotted against A. The 
full curve shows the results of self-consistent perturbation theory. The broken curve shows 
the mean permeability. 

to the discrepancy. An interesting feature of the results for the polynomial model is 
the discrepancy which appears as c passes through 1 and approaches 1.4. We note 
that the physical requirement that K ( x ) ~ O  implies the constraint c S J 2 .  Since per- 
turbation theory shows no particular features when c breaks this bound, it is not very 
surprising that this discrepancy shows up. On the contrary it is remarkable that 
perturbation theory continues to give such a reasonable account of the effective 
permeability for c so near its upper bound. A partial explanation may lie in the fact 
that while setting c = J2 introduces regions of zero or very low permeability, these 
remain sparsely distributed for small A. For c = J2 and large A, these impermeable 
regions may become so dense as to introduce a percolation threshold in A at which 
the effective permeability will vanish. 

Our main conclusions are that, on the one hand, perturbation theory methods 
drawn from solid state physics are useful in effective permeability calculations and, 
on the other hand, the diffusion simulation techniques we have developed are also 
practical means of computing effective parameters. They may be expected to be more 
widely applicable than perturbation theory. All that they require is a computable 
model of the inhomogeneous medium. 

Our simulations were performed on the ICL DAP at Queen Mary College, London. 
Our second-order algorithm used a time step AT in the range 0.05-0.1 corresponding 
roughly to two or three compound steps or 4-6 primitive steps per correlation length 
in any given direction. The algorithm is sufficiently good for our results to be insensitive 
to changes in AT over the range indicated above. The statistical errors we quote are 
the result of following 1.5 x 10’ particle paths. 
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We can envisage two immediate extensions of our work. First it is interesting to 
simulate the effective permeability in models other than the two considered in this 
paper. In particular we would like to investigate the percolation effects that might be 
observable in a medium divided in varying proportions between permeable and imper- 
meable material. Second we wish to extend the computation to pressure fluctuations 
and their relationship with the permeability structure of different models. 

Finally we would like to emphasise the generality of our simulation technique and 
its applicability to a much wider class of models of heterogeneous media than was 
considered in this paper. 
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